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We study the effects of local inhomogeneities, i.e., slow sites of hopping rate q�1, in a totally asymmetric
simple exclusion process for particles of size ��1 �in units of the lattice spacing�. We compare the simulation
results of �=1 and ��1 and notice that the existence of local defects has qualitatively similar effects on the
steady state. We focus on the stationary current as well as the density profiles. If there is only a single slow site
in the system, we observe a significant dependence of the current on the location of the slow site for both �
=1 and ��1 cases. When two slow sites are introduced, more intriguing phenomena emerge, e.g., dramatic
decreases in the current when the two are close together. In addition, we study the asymptotic behavior when
q→0. We also explore the associated density profiles and compare our findings to an earlier study using a
simple mean-field theory. We then outline the biological significance of these effects.
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I. INTRODUCTION

A better understanding of nonequilibrium steady states in
interacting complex systems forms a critical goal of much
current research in statistical physics. In this pursuit, the to-
tally asymmetric simple exclusion process �TASEP� �1–6�
has played a paradigmatic role. It provides a nontrivial, yet
exactly solvable, example of phase transitions far from equi-
librium, taking place even in one-dimensional �1D� lattices.
At the same time, it also serves as the starting point for the
modeling of many physical �driven diffusive� processes, such
as translation in protein synthesis �7–9�, inhomogeneous
growth processes �e.g., Kardar-Parisi-Zhang growth� �10,11�,
and vehicular traffic �12,13�.

In its simplest version, the TASEP involves a single spe-
cies of particles hopping to nearest-neighbor sites, in one
direction only, along a homogeneous 1D lattice. Provided the
destination site is empty, the rate for the particle hop is fixed
at � �typically chosen as unity without loss of generality�.
With periodic boundary conditions, the steady-state distribu-
tion is trivial �14� but the full dynamics is quite complex
�15–17�. With open boundary conditions, particles are in-
jected with rate � �in units of �� at one end and drained with
rate � at the other end. The competition of injection, trans-
port, and drainage induces a nontrivial phase diagram in the
�-� plane �1–6�, reflecting a highly nontrivial steady state.
Three phases are present: a maximum-current phase for
� ,��1/2, and a low- �high-�density phase for ���, �
�1/2 ����, ��1/2�. Not surprisingly, there are also rich
dynamical aspects �18,19�.

To model protein synthesis, each site on the lattice repre-
sents a codon on the messenger RNA �mRNA�, and the par-
ticles represent the ribosomes. Injection, hopping, and drain-
age are associated respectively with initiation, elongation,
and termination in biological terms. The quantity of interest,
namely, the �steady-state� protein production rate, is identical
to the �stationary� particle current. Clearly, the simple

TASEP falls short of the biological system in several signifi-
cant aspects. One is that an individual ribosome “covers”
several codons �7,20,21�, as opposed to a particle occupying
only a single site. Another is that, in all naturally occurring
mRNAs, the codons carry genetic information and therefore
necessarily form an inhomogeneous sequence. Thus the elon-
gation rate of a ribosome is unlikely to be uniform; instead,
the hopping rate �i of a particle becomes a function of the
site i. For example, it is well known that translation slows
down at specific codons �see, e.g. �9,22–25��, with poten-
tially significant consequences for protein production rates.
Indeed, the steady-state current may depend sensitively on
not only the frequency of each codon’s occurrence, but also
the order of their appearance in the sequence. Both of these
issues—extended objects and inhomogeneous rates—have
been addressed recently in separate contexts which we sum-
marize briefly in the following.

The results associated with inhomogeneous �quenched
random� rates fall into two broad categories, in the sense that
the randomness can be associated with the particles �26–28�
or with the sites. Randomness of the former type is more
relevant for vehicular traffic where it accounts for a variety
of driver preferences. In contrast, the disorder in the protein
case is clearly site dependent, leading to spatially nonuni-
form hopping rates �i. Restricting ourselves to this class, we
can consider the effect of having a whole distribution, or
very specific configurations, of ��i�. Starting from given dis-
tributions, two groups �29,30� studied the resulting disorder
in periodic systems. To mention just one significant effect,
the current-density diagram develops a plateau: limited by
the smallest rate in the system, the current becomes indepen-
dent of density over a range of densities. Harris and Stinch-
combe �30� also extended this work to open systems. While
these studies may be of some interest to mixtures of many
different mRNAs, our primary interest here is to understand
how the production rate of a specific protein is associated
with a specific genetic sequence. As a first step towards a
solution, we adopt the approach of several other studies
�9,31–33�, by focusing on the effects of a few localized in-
homogeneities, i.e., hopping rates which are uniform except
at a handful of sites �34�. As a synthesis of these studies, we*jjdong@vt.edu
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will explore in some detail the consequences of having ex-
tended objects and locating one or two slow sites at a variety
of positions on the lattice. In this manner, by introducing
more and more sites with a range of rates, we hope to under-
stand inhomogeneities in a systematic way, setting the stage
for further investigations of the translation process.

A full comprehension of the effects of slow sites on the
particle current may have potentially significant applications
in biotechnology. While there are 64 distinct codons, proteins
are chains composed of just 20 amino acids. So, many dif-
ferent mRNAs �codon sequences� can code for the same par-
ticular protein. Moreover, the amino acid is incorporated into
the growing chain by an important intermediary, the so-
called transfer RNA �tRNA�, which carries the complemen-
tary anticodon. It turns out that the mapping between codons
and tRNAs is also not precisely 1-1. For example, in E. coli,
the genetic code actually involves 61 sense codons and about
46 tRNAs with associated anticodons �35�. Meanwhile, for a
given mRNA sequence, the protein production rate is often
modeled in terms of �generally accepted� charged-tRNA
�aminoacyl-tRNA, or aa-tRNA� concentrations �24�, so that
different sequences can result in different production rates
for the same protein. By elucidating how the spatial distribu-
tion of defects, especially of bottlenecks, affects translation
rates, we can pinpoint those clusters of codons which are
likely to have the most significant effect on the production
rate of the associated protein. Exploiting the degeneracy in
the mapping from mRNA sequence to protein, we can pro-
vide guidance as to how a few selected, local modifications
of the mRNA can optimize the production rate of a given
protein.

Our paper is organized as follows. In Sec. II, we define
the model and provide a more detailed description of previ-
ous work, concerning exclusion processes with extended ob-
jects or spatially inhomogeneous rates. A brief discussion of
a previous mean-field analysis is also included. In Sec. III,
we present our Monte Carlo results. We focus especially on
the implications of having extended objects by varying the
particle size. We first consider the interaction between one
slow site and the system boundary, and, motivated by the
resulting findings, turn to the interactions between two slow
sites. This provides interesting insights for genes containing
clusters of slow codons, which occur frequently in, e.g., E.
coli, Drosophila, yeast, and primates �9,36,37�. In Sec. IV, a
complete investigation of systems with inhomogeneities is
presented using a mean-field approach. Section V contains
our conclusions and a summary of open questions.

II. MODEL SPECIFICATIONS AND KNOWN RESULTS

The TASEP is defined on a 1D lattice of N sites. We
introduce an index i=1,2 , . . . ,N to label the sites. Each site
�codon� is either occupied by a single particle �ribosome� of
length � �in units of sites� or empty. A microscopic configu-
ration of the system can be uniquely characterized in terms
of a set of occupation variables �ni�, taking the value 1�0� if
site i is occupied �empty�. Of course, the extended nature of
the particle induces strong correlations in �ni�, in the sense
that a single ribosome always covers � consecutive sites. Yet,

at any given time, only one of the covered codons is being
“read” �i.e., the codon is “covered by the aminoacyl site,” or
A site, of the ribosome� and translated into an amino acid.
Here, we refer to the associated location on the ribosome as
the “reader” �of the genetic code�. For our purposes, it is not
essential which one of the � sites is labeled as the reader, and
so we follow the convention in �8� and choose the first �left-
most� site. Hence the statement “a ribosome �or particle� is
located at site i” implies that the reader is located at site i and
the subsequent

�̄ � � − 1 �1�

sites are also occupied. Naturally, the position of the reader
determines the elongation rate, i.e., �i, since the ribosome
must wait for the arrival of the aa-tRNA with the i-specific
anticodon before it can move to the next site. Clearly, the
reader locations can also be used to label a microscopic con-
figuration, i.e., we can define the reader occupation number
at site i as ri. The sets �ni� and �ri� are uniquely related to
each other. Moreover, due to the extended size of a particle,
strict constraints are built in �e.g., ri=1 implies ri+1= ¯

=ri+�−1=0 and ni= ¯ =ni+�−1=1�. As a consequence, neither
set can be arbitrary and serious correlations arise as soon as
��1 �38�.

In our simulations, we adopt a random sequential updat-
ing scheme and keep a list of locations of readers. In addi-
tion, the site i=0 is always occupied by a “virtual reader,”
which accounts for particles entering the system �initiation�.
At the beginning of each Monte Carlo step �MCS�, we first
find the number of particles in the system and label it M.
Then, we randomly select an entry from this list of M +1
readers. If the chosen reader is virtual �i.e., i=0�, a new
particle enters the lattice with probability �, provided all the
first � sites are empty. If the chosen reader is real, say, at site
i�0, the associated particle is then moved to site i+1 with
probability �i, provided site i+� is empty. With this notation,
we can also write the initiation and termination probabilities
�� and �� as �0 and �N, respectively. To be complete, the
sites beyond the lattice are by definition empty, so that once
a particle reaches N−�+1, it will not experience steric hin-
drance �see Fig. 1 for a sketch of this process�. These pro-
cesses have been termed “complete entry” and “incremental
exit” �39�. Other entry and exit rules can be considered, but
are believed to be inconsequential provided � /N�1. Each
MCS consists of M +1 such attempts, giving an even chance,
on average, for each particle �ribosome� in the system to

FIG. 1. Sketch of a TASEP for particle size �=6 with �a� a
single slow site at position k, with rate q, and �b� two slow sites
with rate q, separated by a distance d.
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elongate or terminate, as well as for an initiation event to
occur.

Starting with an empty lattice, we typically discard 2
	106 MCSs to ensure that the system has reached the steady
state. Unless otherwise noted, good statistics result if we av-
erage over least 2	104 measurements, separated by 100
MCSs in order to avoid temporal correlations. Such steady
state averages will be denoted by �¯	. To reduce the number
of parameters in the model, we study systems with �=�
=�i=1, except at one or two sites. The system sizes �N�
range from 200 to 1000, with most data taken from N
=1000.

To characterize the state of the system, we monitor sev-
eral observables. The most obvious is 
i

r��ri	, a quantity we
will refer to as the ribosome �or reader, or particle� density.
Of course, 
i
i

r is just the average number of particles in the
system �i.e., ribosomes on the mRNA�. Thus the overall par-
ticle density N−1
i
i

r is bounded above by 1/�. Another in-
teresting variable 
i��ni	, labeled as the “coverage density,”
is the probability that site i is covered by a particle �regard-
less of the location of the reader�. Needless to say, the profile
for the vacancies is given by the local hole density, 
i

h�1
−
i. The overall coverage density, N−1
i
i, may reach unity
and provides a good indication of how packed the system is.
The two profiles are related by


i = 

k=0

�−1


i−k
r �2�

with the understanding 
i
r�0 for i�0.

A quantity of great importance to a biological system is
the steady-state level of a given protein. If we assume that
the degradation rates are �approximately� constant, i.e., inde-
pendent of protein concentration, then these levels are di-
rectly related to the protein production rates. In our model,
such a rate is just the average particle current J, defined as
the average number of particles exiting the system per unit
time. In the steady state, it is also the current measured
across any section of the lattice. For simplicity and to ensure
the best statistics, we count the total number of particles
which enter the lattice over the entire measurement period �at
least 2	106 MCSs in most cases�.

In this study, we focus on two simple types of inhomoge-
neities: one or two “slow” sites �Fig. 1�. Their locations
specify the only inhomogeneities in the rates.

One slow site, at position k: We denote �k by q ��1�. This
corresponds to a bottleneck in the lattice. We are especially
interested in the dependence of the current, denoted by Jq�k�,
on the parameters q and k.

Two slow sites, at positions k1 and k2 with separation d
��k2−k1� and rates q1,2��k1,2

: We find that, when q1�q2,
the current is controlled mainly by the smaller of the two,
with little dependence on d, in agreement with a simple
mean-field theory to be discussed in Sec. IV. Therefore most
of our attention will be devoted to the case with q1=q2�q
�1. Moreover, we choose to limit our study to both sites
being far from the boundaries. Then, the current is insensi-
tive to their average position �k2+k1� /2, and we can investi-
gate Jq�d�. Note that these are precisely the systems studied

in �9�, except that we consider particles with a range of sizes:
�=1, 2, 4, 6, and 12. While there are qualitative similarities,
we will discuss the quantitative differences due to ��1, as
well as interesting phenomena associated with the density
profiles.

Let us now provide the context of our work by briefly
reviewing some related earlier studies. The homogeneous
case ��1= ¯ =�N−1=1� with �=1 is exactly soluble �2–6�,
and displays three phases in the �-� phase diagram. For �
�1, no exact solutions exist �40�. Analytic approximations
using various mean-field approaches �7,8,20,39,41� predict
the presence of the same phases, though the phase bound-
aries depend on � �Fig. 2� through the combination �8�

�̂ �
1

1 + ��
. �3�

Monte Carlo studies �8,39� largely confirm these conclu-
sions.

The three phases carry different currents and display dis-
tinct density profiles �2–6,8,33,39�. Apart from “tails” near
the boundaries, the �coverage� density profiles approach uni-
form bulk values in the thermodynamic limit, i.e., 
i→
bulk,
for 1� i�N. For ���̂ and ���, the system is in a low-

density phase �L�, characterized by 
bulk=�� / �1+��̄� and

J=��1−�� / �1+��̄�. A high-density phase �H� prevails for
���̂ and ���, with bulk density 
bulk=1−� and current

J=��1−�� / �1+��̄�. For � ,���̂, the system is in a
maximum-current phase �M�, where 
bulk=1− �̂ and J= �̂2.
On the �=���̂ line �dashed line in Fig. 2�, the system
consists of two macroscopic regions, characterized by a low
�high� density region near the entry �exit� point. The two
regions are joined by a shock front that performs a random
walk. This is often referred to as the “shock phase” �S�. Table
I summarizes the J-
bulk relation for TASEP with extended
objects.

There is good agreement between simulations �with �
�12� and analytic results for these bulk quantities �8,39�.
The details of the profile for ��1, especially near the lattice
boundaries, are less well understood. While periodic struc-
tures �of period �� can be expected, mean-field theories
�7,20,39� were successful in capturing only a limited part of
the phenomena observed. We will return to these consider-

�̂

�̂0

1

1

L

H

M
�

�

FIG. 2. Phase diagram for an ordinary TASEP. On the dashed
line, the H and L phases coexist.
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ations in Sec. IV. Beyond homogeneous systems, several
studies introduced one or more “impurities” into TASEP with
periodic boundary condition. A single “slow” site induces a
shock in the density profile with some interesting statistics
�42–45,47�. Subsequently, generalizations to systems with a
finite fraction of slow sites, randomly located, were also in-
vestigated �29�. For the richer case of the open boundary
TASEP �9,31–33,48�, Kolomeisky focused on point particles
��=1�, with a single impurity at the center of the lattice �31�,
so as to mimic a defect situated deep in an infinitely long
system. The consequences of the defect having both faster
�q�1� and slower �q�1� rates were explored. By matching
two ordinary TASEPs across the defect, the properties of
such systems in the �-� plane can be well described �31,48�.
While a fast site has no effect on the phase diagram, a slow
site leads to a shift of the M-H and M-L phase boundaries to
q-dependent, smaller values of � and �. The density profiles
are quite sensitive to the existence of a defect site �9,31�.
Kolomeisky’s approach was generalized to the �=12 case in
�33�, with similar levels of success. Below, we will provide
further details of this work, on which we base much of the
analysis of our problem. Ha and den Nijs also studied the
�=1 open boundary TASEP with a single defect at the center
�32�. Focusing on the multicritical point �=�=1/2, they
were mainly interested in the so-called “queueing transition”
and its critical properties. Detailed results of density profiles,
such as power law behavior and critical exponents, were ob-
tained in the region q�qc. Here, qc denotes the critical value
of q below which the bulk density in front of the slow site
deviates from the density behind the blockage. By contrast,
our focus here is essentially that of �9,48�, namely, how does
the number and the locations or spacings of the slow sites
affect the current through the system? In the single slow site
case �9�, investigated mainly the overall current as a function
of q, while �48� analyzed the current as a function of k �the
distance between the defect and the entry point�. For the case
of two defects, both studies find that the spacing between
them plays a significant role for the current. A finite-segment
mean-field theory in �9� provides excellent agreement with
data. In particular, clustered defects reduce the current much
more effectively than well separated ones. In this sense, we
can regard these investigations as exploring the “interac-
tions” between the slow site�s� and/or the boundaries. Since
both studies are restricted to point particles ��=1�, our intent
is to explore the effects of having extended objects �with �
�12�. Though we expect qualitatively similar behavior, as
pointed out in �9�, we also find noteworthy quantitative dif-
ferences. Finally, we should mention that larger numbers of
defects do not lead to significantly different effects �9�, so
that we limit ourselves to one or two slow sites here.

III. MONTE CARLO RESULTS

In this section, we present our Monte Carlo results. For
convenience, we use a consistent color coding scheme �on-
line only� for the various particle sizes, as specified in Table
II.

The data here consist of the overall currents and the den-
sity profiles of both coverage and ribosomes. Our focus will
be how these quantities depend on q, k �for the case with a
single defect�, and d �for the case with two defects�. Al-
though the profiles are difficult to extract experimentally, the
reader profiles will be of interest in subsequent studies in-
volving real gene sequences, since they provide information
on how frequently a particular tRNA is bound to the mRNA.
By contrast, the currents are easily measurable and our re-
sults here may generate more immediate interest.

A. One slow site

We begin by placing one slow site on the lattice as in Fig.
1�a�. Figure 3 shows several coverage density profiles for a
typical choice of parameters: N=1000, q=0.2, and k=82
with �=1,6 ,12. As expected, we observe pile-ups of par-
ticles due to the blockage—a high �low� density region be-
fore �after� the bottleneck in all three cases. However, due to
the lack of ordinary particle-hole symmetry in the ��1
cases, the average densities on either side of the slow site are
not symmetric around 0.5. Instead, they are roughly related
through the J-
bulk relations in the H and L phases, summa-

TABLE I. J-
bulk relation for particles of size � ��̄��−1�.

Phase Current J Bulk density 
bulk

L ��1−�� / �1+��̄� �� / �1+��̄�
H ��1−�� / �1+��̄� 1−�

M �̂2 1− �̂

TABLE II. Color coding scheme

Size � Online color

1 black

2 red

4 brown

6 green

12 blue

FIG. 3. �Color online� Coverage density profiles with one slow
site of q=0.2 at k=82. �=1,6 ,12 �from bottom to top in both
subsections� and N=1000. The inset is a magnified view of the i
� �1,150� interval, to expose the period � structures.
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rized in Table I. In detail, the profiles are quite different: The
“tails,” i.e., the deviations from the bulk values, are quite
noticeable in the vicinity of both the slow site and the edges
of the system for the �=6,12 cases. The inset exposes more
clearly that there are period � structures in the profiles
�7,20,39�, especially just before the slow site.

A more dramatic difference between point particles and
extended objects emerges when we plot the ribosome density

i

r, in Fig. 4, corresponding to the inset in Fig. 3. Similar to
profiles in �7,20,39�, we find distinct period � structures be-
fore the slow site. While the reader “waits” to pass the block-
age, the readers of the following particles tend to catch up
and pause at sites k−n�, where n=1,2 , . . . The tails are even
more marked than those in Fig. 3. To emphasize the differ-
ence between the reader and coverage profiles �
i

r and 
i�, we
show a case with q=0.05, k=948, �=12 in Fig. 5. Though
both profiles contain the same information, we see that 
i

r

�lower plot� is far more sensitive than 
i �upper plot� in
showing the very long tails �
1000 in this example� hidden
in the collective behavior of the particles. At present, the
crucial ingredients that control the characteristic decay
length of the 
i

r envelopes have not yet been identified.

Certainly, these very large length scales are completely ab-
sent from the �=1 systems deep within the H /L phases.

As for the current, Fig. 6 illustrates its dependence on q,
k, and �. Not surprisingly, the current is limited by the bottle-
neck and therefore varies monotonically with q. It is also
reduced if the particle size increases, an effect that can be
traced mainly to the particle density being effectively lower
by the factor �. For point particles, the current is not very
sensitive to the location of the slow site. The enhancement as
k approaches the boundary of the system—referred to as the
“edge effect” �48�—is quite small. For larger �, the enhance-
ment is much more pronounced, especially for smaller q.
Whatever the magnitude, in all cases the current increases
monotonically as the slow site is located closer and closer to
the entry point. For �=1, particle-hole symmetry is manifest
in the microscopic dynamics, so that the symmetry of Jq�k�
under k→N+1−k inversion, is obvious �48�. For ��1, the
density profiles confirm the lack of this particle-hole symme-
try very clearly. Correspondingly, there is a systematic asym-
metry in the current: Jq�k�=Jq�N+1−k� is satisfied only for
k
�. The origin of this behavior is not well understood.

The edge effect, and specifically its dependence on q and
�, can be quantified by the ratio

�1�q� =
Jq�k = 1�

Jq�k → ��
. �4�

Figure 7 shows that �1�q� depends on q in a nontrivial way.
The maxima of �1�q� occur at lower values of q as � in-
creases, reminiscent of the behavior of the phase boundary
between M and L /H. With appropriate scaling, the curves of
�1�q� can be collapsed for large �’s. From the biological
perspective, the edge effect is not easily observable since the
current enhancement is less than 10% for the relevant �.

Returning to Fig. 6, we note that significant deviations
from the asymptotic value, Jq���, are found only for k’s

FIG. 4. �Color online� Ribosome density profiles with one slow
site of q=0.2 at k=82. �=1,6 ,12 �from top to bottom in both
subsections� and N=1000. Only the first 150 lattice sites are shown.

FIG. 5. �Color online� Coverage density profile �top� and ribo-
some density profile �bottom� with one slow site of q=0.05 at k
=948. �=12 and N=1000.

FIG. 6. �Color online� Jq�k� as a function of the location k of the
slow site for q=0.2 �lower set of squares�, 0.3 �middle circles�, and
0.4 �upper triangles�. �a� �=1; �b� �=2; �c� �=6; �d� �=12. In all
cases, N=1000.
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within a small distance from the boundaries. At a casual
glance, this range appears to depend on both q and �. On
closer examination of, say, the most prominent case here,
�q ,��= �0.2,12�, we find that the decay of Jq�k� into Jq���
fits an exponential quite well �Fig. 8�, i.e., Jq�k�−Jq���
� exp�−k /��, with ��10. Assuming this behavior persists in
the other cases, we can study the �q ,�� dependence of this
characteristic length and denote it by ��q ,��. We believe that
the origin of this length scale can be traced to the presence of
tails in the density profiles near the lattice boundaries: As the
slow site approaches the entry point, these tails may seri-
ously affect the injection process, and thus the current as
well. For the �=1 case, we observe that ��q ,��
���ef f�,
where � is the characteristic length associated with the
boundary layer of the density profile in the ordinary TASEP.
Specifically, with entry rate �=1 and exit rate �, the system
is in the H-phase and the profile decays exponentially into
the bulk, as 
x-
bulk� exp�−x /�� with �6�:

���� = −
1

ln�4��1 − ���
. �5�

Here, the left half of our system is such a TASEP, except that
we have an effective �: �ef f =q / �1+q� �33�. Using these ar-

guments on the three q’s shown, we estimate decay lengths
of about 5�q=0.4�, 3�q=0.3�, and 2�q=0.2� lattice constants.
Though the data on the differences Jq�k�−Jq��� are small
and noisy, simulation results are consistent with ��q ,1�

���ef f�. However, for ��1, there is no analytic result for
the boundary layers of the density profiles. Moreover, the
data suggest that they are quite complex �e.g., in Figs. 4 and
5�. Thus it is unclear how to quantify the picture for point
particles to the general case of ��q ,��. At present, a complete
understanding of both “boundary layers”—in the density
profiles and in Jq�k�—remains elusive.

If we consider the edge effect as an “interaction” between
the slow site and the lattice boundaries, the natural next step
is to explore the interactions between two slow sites. In order
to avoid edge effects, we place the two slow sites sufficiently
far away from the boundaries and vary their separation.

B. Two slow sites

As mentioned in the previous section, the currents in the
q1�q2 cases are essentially controlled by the slower of the
two rates and so may be regarded as systems with a single
slow site. These profiles can be interesting, but we choose to
restrict our attention here to a study of the q1=q2�q case, in
which the currents show a nontrivial dependence on d, the
distance between the two slow sites. With two bottlenecks,
the system consists of three sections: before the first block-
age, in between the two, and after the second defect. Of
course, for small q, the overall density in the first �last� sec-
tion is expected to be high �low�. In these cases, the effective
entry and exit rates for the central section are also low, so
that a wandering shock should be present. Hence the average
profile should be linear for �=1 �and essentially so for larger
� �8�� with a positive slope. This behavior is understandable,
since the section between the two defects is comparable to an
ordinary TASEP with small �=�. These expectations are
generally confirmed by simulations with q
0.5 and various
�’s up to 12. Figure 9 shows typical coverage profiles, for a
relatively small rate of q=0.2. The system appears to make a
transition from this H /S /L phase to an M /M /M phase as q
increases. The center profiles become essentially flat, as il-
lustrated in the inset �where q=0.6 and �=12�. Details of this
transition are being explored.

More interesting are the finer features of the profiles in the
small q cases. As in the single defect system, the profiles
exhibit period � structures near the slow sites. To resolve
these more clearly, we plot the reader density profiles in Fig.
10. In all cases that involve extended particles ���1�, the
readers clearly pile up behind the slow sites. Apart from
these “jams,” another feature emerges, namely, a sequence of
depletion zones, each of which precedes one of the period �
peaks. For �=2, the differences between the upper and the
lower envelope are especially dramatic. More remarkably,
when the blockages are separated by small d’s, two different
“overlapping tails” are created, as illustrated in the inset of
Fig. 10, where d=1, q=0.2, and �=12. Indeed, there are
further interesting structures for d
�, which will be pre-
sented elsewhere.

FIG. 7. �Color online� �1�q� for �=1, 2, 4, 6 and 12.

FIG. 8. �Color online� Dependence of Jq�k� on k obtained from
simulation is plotted in squares and the line is a linear fit with slope
equal to −0.11. q=0.2, �=12, and N=1000.
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Compared to these remarkable characteristics in the pro-
files, the behavior of the currents seems lackluster. In Fig. 11,
we plot four sets of currents �50�, Jq�d�, associated with �
=1, 2, 6, and 12. In all cases, we see that J is considerably
suppressed when d is reduced. When the slow sites are very
far apart, the current behaves as if there is only one slow site,
consistent with expectations from mean-field theories. At the
other extreme, when the two defect sites are nearest neigh-
bors, the current reaches its minimum. Not surprisingly, pe-
riod � structures emerge as d is varied, illustrated in the inset
of Fig. 11�d�, but become less prominent for d�50. These
plots also reveal that, unlike the dependence on k above,
there are serious deviations from the d→� values when d is
decreased. To quantify this deviation, we define

�2�q� =
Jq�d = 1�

Jq�d → ��
�6�

and plot this quantity vs q in Fig. 12. In contrast to �1�q�, we
observe that �2�q� exhibits a sizable dependence on q, espe-
cially for small values of q. In the limit of q→0 the current
decreases by a factor of 2! In the following section, we will
see that this factor can be understood via a mean-field ap-
proach.

To summarize our simulation results, two bottlenecks near
each other have a dramatic effect on the current. We may
regard this phenomenon as an “interaction” between the two
slow sites, inducing far more “resistance” when they are
close than when they are well separated.

Two additional comments are in order. First, we return to
one of the predictions of the mean-field theory, namely that a
second slow site, spaced far apart from its partner, should

FIG. 9. �Color online� Coverage density profiles for two slow
sites with q=0.2. �=12, d=100; �=6, d=125; �=2, d=150; and
�=1, d=170 �curves are plotted from left to right in the midsubsec-
tion and top to bottom elsewhere�. In all cases, N=1000. Inset: q
=0.6, �=12, d=2400, and N=7200.

FIG. 10. �Color online� Ribosome density profiles with two
slow sites of q=0.2. �=12, d=100; �=6, d=125; �=2, d=150; and
�=1, d=170 �curves are plotted from left to right in the midsubsec-
tion and bottom to top elsewhere�. Inset, �=2 and d=1. In all cases,
N=1000.

FIG. 11. �Color online� Jq�d� as a function of the separation d
between the two slow sites for q=0.2 �lower set of squares�, 0.3
�middle circles�, and 0.4 �upper triangles�. �a� �=1; �b� �=2; �c�
�=6; �d� �=12. The inset in �d� is a magnified view of the d
� �1,60� interval, to expose the period � structures. In all cases,
N=1000.

FIG. 12. �Color online� �2�q� for �=1, 2, 4, 6, and 12.
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have no further effect on the current. Our data indicate that
the current for two slow sites, spaced far apart, is systemati-
cally lower than the current for a single slow site, but only by
a very small amount �less than 1%�. Second, we can again
attempt to identify a length scale which controls how Jq�d�
approaches Jq���, as d increases. Since the central section of
the system displays a shock, it is natural to ask whether the
intrinsic width of the shock sets this length scale. According
to �42,45�, this width covers only a few lattice spacings in
the periodic TASEP with a single defect. Here, however, it
appears that the shock is much broader. For example, the
averaged profile of the shock for the case of q=0.2 with
point particles is shown in Fig. 13, as well as a simple fit
using a tanh function �46� with width of about 10. Intrigu-
ingly, this length appears to be comparable to the one appear-
ing in Fig. 11�a�. More work is needed to fully explore these
issues.

IV. MEAN-FIELD THEORETIC APPROACHES

Mean-field theory is known to agree well with the exact
results for a number of macroscopic quantities in the steady
state of the �=1 TASEP �see, for example, �6��. For extended
particles, no exact solution is available �40� so that mean-
field �and more sophisticated cluster� approximations form
the only route toward some understanding of the system’s
behavior. However, there are many levels of “mean-field”
approximations �7,8,33,39�, corresponding to neglecting dif-
ferent types of correlations. For certain quantities �e.g., cur-
rents in large systems�, predictions from the simplest level
are very close to the simulation results. For others �e.g.,
some reader profiles�, only the most sophisticated level per-
forms adequately. In all cases, no level of mean-field theory
can give a good fit to both the current and the profile. A
thorough discussion of all of these schemes is quite involved
and will be provided elsewhere �49�. Here, we will restrict

ourselves to the simplest method and compare its perfor-
mance to the simulations.

All approaches start with the exact expressions for the
current,

J = ��1 − n�	 �7�

=�i�ri�1 − ni+��	; i � �1,N − �� �8�

=�i�ri	; i � �N − �̄,N − 1� �9�

=��rN	 . �10�

In the absence of the steady-state distribution, the most naive
approximation is to replace �rinj	 by �ri	�nj	. Unfortunately,
the constraints due to particles with ��1 are so severe that
this approximation is entirely inadequate when j= i+�. Even
for the simple case of TASEP on a periodic ring, it leads to
an erroneous expression for J �except if �=1�. Instead, the
average �coverage� density at site i+� is much larger than
the �conditional� probability that it is actually covered given
that the reader is at site i. MacDonald and Gibbs �MG� pro-
posed �7� a much better approximation:

�ri�1 − ni+��	 �

i

r�1 − 
i+��
1 − 
i+� + 
i+�

r =

i

r
i+�
h


i+�
r + 
i+�

h .

As discussed in Sec. II, the densities far from boundaries are
uniform �e.g., 
i→�

r →
bulk /�� and this fact provides a good
description of the current-density relation

J�
bulk� =

bulk�1-
bulk�

� − �̄
bulk

�11�

�for �=1�. Exploiting this relation and regarding our model
as two or three TASEPs joined by slow sites, the simplest
level of mean-field theories can be built. Ours is similar to,
but simpler than, the approach in �33� for the single defect
case. The main difference lies in the matching condition, i.e.,
what approximate expression for the current across the slow
site to use. After comparing the two approaches, we proceed
to build the case for TASEP with two defects.

A. One slow site

When a single slow site �q�1� is located at k, the system
can be treated as two sublattices: �1, k� and �k+1,N�, re-
ferred to as the left and right sublattices, respectively. Asso-
ciated quantities will appear with subscripts L and R. The
two sections are coupled through the slow site by having the
same current in the steady state. Given this constraint, there
are only two viable scenarios for the sublattices, out of the
3	3 logically possible ones: H /L and M /M.

First, let us consider the H /L case which was one studied
extensively in �33�. The current for each sublattice can be
written as

FIG. 13. �Color online� The open circles mark the average pro-
file of a shock between slow sites 149 and 349 with q=0.2, com-
piled from of a very long run �3	108 MCSs� with an N=1000, �
=1 system. Only the �210, 290� segment is shown and is scaled to
center at 0. Details of how raw profiles are shifted �so that the shock
is located at site x=0 shown here� will be published elsewhere �49�.
A simple fit using A+B tanh�x /10� is also shown �solid line�.
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JL =
�L�1 − �L�

1 + �L�̄
, JR =

�R�1 − �R�

1 + �R�̄
, �12�

where �L and �R are the effective exit and entry rates, to be
determined later. By definition, the entire system reaches
steady state when JL=JR, which yields �L=�R. Of course,
these are intimately related to the �bulk� densities through


L=1−�L and 
R=��R / �1+�R�̄�, so that

�1 − 
L�

1 + �1 − 
L��̄
=


R

�
.

Another way to regard this relation is that both densities lead
to the same current, which we denote by J �a value to be
determined, and equal to JL=JR�. So, the high and low den-
sities can be written as 
+�J� and 
−�J�, respectively, being
the two roots to Eq. �11�. They will play a crucial role when
we impose the matching condition, thereby fixing all quanti-
ties as a function of q.

The exact equation for “matching” is

J = q�rk�1 − nk+��	 , �13�

in which rk and nk+� lie in L and R, respectively. Now, the
right can be expressed as, again exactly, p�k �k+��, the prob-
ability for finding a ribosome at k, conditioned on the pres-
ence of a hole at k+�.

Since we have “broken” the system into two separate
TASEPs, a naive approximation is to begin with

JNMF = q�rk	��1 − nk+��	 ,

where the subscript stands for “naive mean field.” Regarding
this as Eq. �7� for the R sublattice, we have �R=q
k

r . Now, 
k
r

is in the L sublattice, and must be related to 
L in a mean-
field approach. The most naive assumption is that 
k

r is the
same as its average in the bulk, i.e., 
bulk

r , which would be

L /� in this case. However, this turns out to underestimate
p�k �k+�� seriously. Indeed, the “pile-up” near a blockage
�e.g., in Fig. 5� shows that 
k

r is significantly higher than its

bulk value as well as the densities on the �̄ sites before. Thus
we propose that a better approximation would be to replace

k

r by 
L, and we write

�R = q
L. �14�

Using 
L=1−�L and �L=�R, so that �R=�L=q / �1+q� and


L = 1/�1 + q�, 
R = q�/�1 + q�� ,

we arrive at JNMF=q / ��1+q��1+q���. The premise behind
this line of arguments is that the system is in H /L, so that
both �R and �L should be less than �̂. Therefore this expres-
sion for the current should be valid only if it is less than the
maximal value ��̂2�. In other words, the domain of its valid-
ity is limited to q�1/��. For higher q, this approach pre-
dicts that the system will be in an M /M phase, with maximal
current. Note that such a phase cannot occur with a slow
defect in the �=1 case, where M /M can be accessed only
with q�1. In an earlier study �33�, the parameters chosen

�q=0.2 and �=12� also precluded the presence of this phase,
although we believe �see below� that this phase cannot be
present if the blockage is in the center �k=N /2� or deep in
the bulk. We summarize this naive mean field by

JNMF = �q/��1 + q��1 + q��� for q � 1/��

�̂2 for q � 1/��
� . �15�

An alternative approximation for Eq. �13� was proposed
earlier �33�:

J � qef f�
L

�
�� 1 − 
R

1 − 
R�̄/�
� . �16�

The last two factors can be recognized as �rk	 and the MG
approximation for the effective hole density �7�. The first
factor is a little more subtle �33�: Considering that the transit
time for a single particle through the slow site �in the ab-

sence of steric hindrance� is q−1+ �̄, qef f is defined as the
average rate to move just one step in this process:

qef f �
q�

1 + q�̄
.

The end result for the current is the solution to the algebraic
equation

J = qef f

+�J��1 − 
−�J��

� − 
−�J��̄
.

Here, we give an explicit form �which displays the �=1 limit
well�

JSKL =
Q

�1 − Q + �1 − 2Q��̄
, �17�

where

Q �
2q�̄�1 + q�̄�

�1 + q + 2q�̄�2
.

Note that, for any q�1, this approach predicts that the cur-
rent is less than the maximal value of �̂2 and so the system is
always in the H /L phase.

The results of both mean-field predictions for J as a func-
tion of q are shown in Fig. 14, along with two sets of data:
Jq�1� and Jq�363�. As expected, JSKL was purpose-built for
two infinite TASEP’s connected by a slow site and provides
a better fit to the data with the blockage deep in the bulk
�k=363 in N=1000�. On the other hand, it is understandable
that, e.g., for k=1, �R must be very close to q. Thus we may
expect that the system will have maximal current for q
�1/��. This behavior is confirmed by the data, as illustrated
in the figure for �=12. Since JNMF�q� has the property that it
saturates at �̂2 for q��̂, it provides a better fit for Jq�1�. Of
course, we recognize that, as mean-field theories, neither
Eqs. �14� nor �16� are the first step in a systematic expansion,
so that they may better be thought of as “semiphenomeno-
logical.”
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More importantly, there is a more serious, inherent limi-
tation in this level of mean-field theory. It cannot account for
the full k dependence in Jq�k�, since it deals only with infi-
nite systems. One possibility to incorporate finite-size effects
�of the left sublattice� in this kind of theory is to exploit the
MG expression �7�

JMG =

i

r
i+�
h


i+�
r + 
i+�

h

for sites near the boundaries. Using it in a recursion relation
for finding both the density profile and the current, we will
arrive at a k-dependent expression, JMG��=1,�L ;k�, which
replaces JL in the first expression of Eq. �12�. However, the
high density fixed point of this recursion relation is unstable
and very careful numerical analysis will be necessary. Pre-
liminary work on this approach is promising and will be
reported elsewhere �49�.

We end this subsection by noting that the effects of a
single defect in TASEP have also been investigated in �32�.
Unlike our focus here, the dependence of J on the location of
the slow site, they are concerned with a “multicritical sys-
tem,” i.e., �=�=1/2 for the �=1 case. Putting the defect at
the center of the lattice, they explored density profiles in
detail, finding power law tails on both sides of the defect
with q-dependent exponents. By contrast, our choice of �
=�=1 places us far from the multicritical point. We have no
reason to expect similar power laws.

B. Two slow sites

The most general TASEP with just two slow sites can be
quite involved, since the parameter space is four-
dimensional: �q1 ,q2 ,k1 ,k2�. To carry out a manageable in-
vestigation, we let both sites be deep in the bulk, so that only
the distance between them, d��k2−k1�, plays a significant

role. Further, as pointed out above, the central section re-
sembles an ordinary TASEP with � and � controlled by q1
and q2, respectively. Therefore it is the smaller �slower� of
the two rates which limits that current, which in turn dictates
the current through the whole system. Thus we will focus
only on the q1=q2=q case. Our parameter space will then
resemble the single slow site case.

Following the single defect case, the simplest levels of
mean-field theory treat our system as three subsections with
obvious labels: L, C, and R. From our discussion, only two
�out of the many logical possibilities� combinations of
phases, H /S /L and M /M /M, are expected to be viable. In
addition to Eq. �12�, we have

JC =
�C�1 − �C�

1 + �C�̄
. �18�

Since the defect rates are identical, we fully expect that, for
such a mean-field theory, �C=�C. Now, matching the cur-
rents of the subsections, we immediately arrive at JL=JC
=JR and so, �L=�C=�C=�R. From here, the “naive” mean-
field approach for H /S /L proceeds identically to the above.
The argument relies on the presence of a shock in the central
section, so that there is a low �high� density region near site
k1+1�k2� and we can impose the same discontinuity in the
densities across both defects, i.e., 
+�J� before and 
−�J� af-
ter. Thus we again arrive at JNMF�q�, given explicitly in Eq.
�15�. The same argument can be applied to the next level of
a mean-field approximation, which predicts JSKL�q�, as in Eq.
�17�. The major difference between the two approaches, as in
the single slow site case, is the absence of the M /M /M
phase in the latter. Meanwhile, their limitations are similar:
The d dependence in Jq�d� cannot be accommodated without
serious modifications.

Nevertheless, the spirit of these approximations can be
exploited to provide Jq�1� in the q→0 limit. Since the cen-
tral section consists of just one site, there can be no shock.
Instead, the remnant of the shock is reflected in the average
density there. It is more convenient to regard the system as
two infinite TASEP’s, with nontrivial matching across a
“doubly slow site.” Of course, we cannot expect to find any
of the fascinating profile details �e.g., inset of Fig. 10�, but
we should be able to obtain the “coarser” information, such
as the currents. The goal is to understand the behavior of
�2�q→0� �cf. Fig. 12� in, say, the first two nonvanishing
orders in q.

Now, for q�1, we are naturally in the H /L phase and the
crudest approximation should suffice for the lowest order in
the current. So, we let the bulk densities be at their extremes
�i.e., 1 and 0� and simply consider the time it takes for a
particle to move through the blockage, from the moment its
predecessor is “released.” The current is just the inverse of
this quantity, i.e.,

�2

q
+ � − 2�−1

→
q

2
�1 −

q

2
�� − 2� + ¯ � , �19�

where we have included O�q2� terms for computing the next
order. But, at this order, we should also take into account
that, occasionally, the density before or after the blockage

FIG. 14. �Color online� Comparisons of the current J as a func-
tion of q. The legend labels the two sets of simulation data �slow
site at k=1 and 363� and predictions from two mean-field
approximations.
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deviates from unity or zero by virtue of the right hand side of
Eq. �11� being nonzero. Thus these densities are


L → 1 − J = 1 − q/2 + ¯ ,


R → J� � q�/2 + ¯

and further suppress the current at the next-to-lowest order
through the factor


L�1 − 
R� → 1 −
q

2
�� + 1� + ¯ . �20�

Combining these factors, we arrive at

Jq→0�d = 1� →
q

2
�1 − q�� −

1

2
� + ¯ � .

If we use exactly the same arguments for the q→0 limit
current in the case of one slow site, we find, instead of Eq.
�19�,

�1

q
+ � − 1�−1

→ q�1 − q�� − 1� + ¯ � , �21�

and, instead of Eq. �20�,


L�1 − 
R� → 1 − q�� + 1� + ¯ .

Finally, since Jq�d→�� is the same as the single-blockage
current, we write

Jq→0�d → �� → q�1 − 2q� + ¯ � �22�

so that

�2�q → 0� →
1

2
+

q

2
�� +

1

2
� + ¯ .

It is remarkable how well this crude approximation agrees
with the data in Fig. 12. There is no doubt that all curves
extrapolate to the �-independent value of 1 /2 at q=0. As for
the slope at the origin, we can obtain a good estimate from
the lowest q data points, using ��2�q=0.02�−0.5� /0.02. The
values obtained from simulations for �=1, 2, 4, 6, and 12 are
0.92, 1.55, 2.53, 3.44, and 6.06, respectively.

We are aware that the expansion �22� differs from the
small q limit of JNMF. Unfortunately, it is difficult to imple-
ment the same scheme for JNMF here, since we must start
from the exact pair of equations:

J = q�rk�1 − nk+��	 = q�rk+1�1 − nk+�+1�	 . �23�

Various attempts at approximating 
k
r or 
k+1

r led to poorer
results. Alternatively, we could exploit the argument in Shaw
et al. �33� and consider the average time to traverse both
slow sites, 2 /q+ ��−2�. This gives us a new effective q:

q̃ef f �
q�

2 + q�� − 2�

which can be inserted into Eq. �16�. The result is �2�q
→0�→ 1

2 + q
4 ��+2�+¯, the O�q� term of which differs from

the data by about a factor of 2. Clearly, mean-field ap-
proaches are far from ideal for finding quantitative predic-

tions of Jq�d�. On the other hand, either JNMF�q� or JSKL�q�
provide tolerable results when the blockages are from from
each other or the boundaries. Such variations in the quality
of mean-field theories point to the importance of correla-
tions. Considerable efforts appear to be necessary for a com-
prehensive, yet relatively simple, theory.

Let us end this section with another method which could
possibly improve the theoretical predictions �51�, especially
for the first few values of k. The idea is to find exact results,
by solving the full master equation, for TASEPs �with ex-
tended objects� on very small lattices and then to match these
to an infinite system �the R sublattice�. One expectation is
that, as in the �=1 case, the finite-size current is larger than
its counterpart for the infinite TASEP at the same �� ,��. This
approach may eventually provide the essential argument to
understand the increase in Jq�k� as k becomes smaller. Simi-
larly, this idea can be applied to the case with two slow sites
when d is O�1�. Work is in progress to explore these av-
enues.

V. SUMMARY AND CONCLUSIONS

In this study, we consider an inhomogeneous TASEP with
open boundaries and populated with particles of finite extent
�. The hopping rates are uniform �set at unity� except for one
or two sites �“defect bonds”�, where the rates q are different
�faster or slower�. We are interested in the effects of these
local defects on the density profiles and the currents through
the system. Simulations with various ��12 show that fast
sites have no effect on the current, but induce discontinuities
in the density profiles. In contrast, slow sites generate a sig-
nificant reduction of the current as well as nontrivial struc-
tures in the profiles, e.g., long tails behind the blockage, with
period �. These findings are entirely consistent with similar
studies in the past, most of which were restricted to �=1
�31,32�. If the inhomogeneities are deep in the bulk and far
from each other, the current depends only on q and can be
understood through simple mean-field considerations.
Through the current-density relationship �for an infinite ho-
mogeneous TASEP�, the overall densities in each of the
defect-free sections can be also predicted, so that the various
“phases” of these subsystems can be understood. The distin-
guishing feature in our study is how the location of the de-
fects affects the behavior of the system. For the case of one
slow site, the current is slightly but measurably enhanced
when the defect approaches the boundary. On the other hand,
a drastic reduction of the current is observed when two slow
sites are brought closer to each other. It is tempting to inter-
pret these effects as “interactions” between the defects and to
seek a formulation that can describe them quantitatively.

At present, neither the enhancement nor the suppression
of the currents can be understood in terms of simple mean-
field theories. The essential limitation is that they are based
on matching homogeneous TASEPs of infinite length. More
sophisticated versions, relying on recursion relations for the
particle density at each site, may be exploited to deal with
the finite subsections and provide some promise for a better
understanding of such effects. For very small subsections,
such as k ,d
5, it may be possible to find exact solutions
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�even for ��1� that can be used to match the mean-field
descriptions for the macroscopic subsection�s�. Work is in
progress to investigate these approaches systematically.

Beyond one or two blockages, we should study systems
with multiple slow sites, as our eventual goal is to under-
stand the properties of fully inhomogeneous TASEPs. In par-
ticular, though restricted to just one or two slow sites, our
findings—that the relative locations of blockages are
important—will have implications for translation. For ex-
ample, they are directly applicable to “designer genes,”
which consist of many repeats of the same codon, except at
one or two locations. Using the abundance of associated aa-
tRNAs as a control for the elongation rate across any par-
ticular codon, we can test our results directly on such genes.
Thus it will be interesting to see the physical manifestation
of, e.g., enhancement and suppression of production rates of
such artificial proteins, depending on the placement of the
slow codon�s�. Similarly, reproducing the intriguing ribo-
some density profiles will be revealing. More important than
“designer genes,” we should consider the implications for
real genes. Our results should provide, at the least, some
simple qualitative insights. We can obviously maximize the
production rate of a particular protein associated with a cer-
tain real gene by systematically replacing all slow codons

with synonymous, faster ones. However, for most genes this
operation will require a large number of replacements. In-
stead, with our findings in mind, we can achieve consider-
able increases in the production rates by making only a few
substitutions, namely, by replacing the slowest codons, or a
cluster of nearby slow codons. The ratio of current enhance-
ment to the number of codon replacements may be used to
quantify how “optimal” a certain set of substitutions is. This
idea can be applied to finding optimal means to suppress
prodcution rates as well. Simulation work with TASEPs as-
sociated with real genes is in progress and we hope to dem-
onstrate that these concepts are viable.
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